9.1: Rational Equations (2024)

  • Page ID
    45127
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    When solving rational equations, we can solve by using the same strategy we used to solve linear equations with fractions: clearing denominators. However, we first need to revisit excluded values.

    Excluded Values

    Note

    A rational expression is undefined where the denominator is zero. Recall, we cannot divide by zero, so it is critical we find these values and exclude them from the solution.

    Example 9.1.1

    Find the excluded value(s) of the expression: \(\dfrac{-3z}{z+5}\)

    Solution

    Step 1. Set the denominator of the rational expression equal to zero: \[z+5=0\nonumber\]

    Step 2. Solve the equation for \(z\): \[\begin{aligned}z+5&=0 \\ z&=-5\end{aligned}\]

    Step 3. The values found in the previous step are the values excluded from the expression. Hence, the excluded value is \(z = −5\).

    Example 9.1.2

    Find the excluded value(s) of the expression: \(\dfrac{x^2-1}{3x^2+5x}\)

    Solution

    Step 1. Set the denominator of the rational expression equal to zero: \[3x^2+5x=0\nonumber\]

    Step 2. Solve the equation for \(x\): \[\begin{aligned}3x^2+5x&=0 \\ x(3x+5)&=0 \\ x=0\quad &\text{or}\quad 3x+5=0 \\ x=0\quad &\text{or}\quad 3x=-5 \\ x=0\quad &\text{or}\quad x=-\dfrac{5}{3}\end{aligned}\]

    Step 3. The values found in the previous step are the values excluded from the expression. Hence, the excluded values are \(x = 0\) and \(x = −5\).

    Definition: Extraneous Solution

    Recall, the excluded values are values in which make the expression undefined. Hence, when solving a rational equation, the solution(s) is any value(s) except the excluded values. If we obtain a solution that is an excluded value, we call this an extraneous solution.

    Clearing Denominators Using the LCD

    Let’s recall an example from solving linear equations with fractions. Let’s be reminded of the process for clearing denominators when solving equations. In this section, we solve rational equations using the same process.

    Example 9.1.3

    Solve for \(x\): \(\dfrac{2}{3}x-\dfrac{5}{6}=\dfrac{3}{4}\)

    Solution

    This is a similar problem from solving linear equations with fractions. We will clear denominators by multiplying each term by the LCD.

    \[\begin{array}{rl}\dfrac{2}{3}x-\dfrac{5}{6}=\dfrac{3}{3}&\text{Multiply each term by LCD = }12 \\ \color{blue}{12}\color{black}{}\cdot\dfrac{2}{3}x-\color{blue}{12}\color{black}{}\cdot\dfrac{5}{6}=\color{blue}{12}\color{black}{}\cdot\dfrac{3}{4}&\text{Clear denominators} \\ 8x-10=9&\text{Isolate the variable term} \\ 8x=19&\text{Solve for }x \\ x=\dfrac{19}{8}&\text{Solution}\end{array}\nonumber\]

    Steps for solving rational equations

    Step 1. Determine the excluded values of the equation.

    Step 2. Clear denominators by multiplying each term by the lowest common denominator.

    Step 3. Solve the equation.

    Step 4. Verify that the solutions obtained are not an excluded value.

    Example 9.1.4

    Solve for \(x\): \(\dfrac{5x+5}{x+2}+3x=\dfrac{x^2}{x+2}\)

    Solution

    We can solve by following the above steps.

    Step 1. Determine the excluded values of the equation. \[\begin{aligned}x+2&=0 \\ x&=-2\end{aligned}\] The excluded value is \(x = −2\). This means we can obtain any solution except for \(x = −2\).

    Step 2. Clear denominators by multiplying each term by the lowest common denominator. \[\begin{array}{rl}\dfrac{5x+5}{x+2}+3x=\dfrac{x^2}{x+2}&\text{Multiply each term by LCD }=(x+2) \\ \color{blue}{(x+2)}\color{black}{}\cdot\dfrac{(5x+5)}{x+2}+\color{blue}{(x+2)}\color{black}{}\cdot 3x=\color{blue}{(x+2)}\color{black}{}\cdot\dfrac{x^2}{x+2}&\text{Clear denominators} \\ 5x+5+3x(x+2)=x^2\end{array}\nonumber\]

    Step 3. Solve the equation. \[\begin{array}{rl} 5x+5+3x(x+2)=x^2&\text{Distribute} \\ 5x+5+3x^2+6x=x^2&\text{Combine like terms} \\ 3x^2+11x+5=x^2&\text{Notice the term }x^2\text{; we solve by factoring} \\ 2x^2+11x+5=0&\text{Zero on one side and factor the other side} \\ (2x+1)(x+5)=0&\text{Apply the zero product rule} \\ 2x+1=0\text{ or }x+5=0&\text{Isolate variable terms} \\ 2x=-1\text{ or }x=-5&\text{Solve for }x \\ x=-\dfrac{1}{2}\text{ or }x=-5&\text{Solutions}\end{array}\nonumber\]

    Step 4. Verify that the solutions obtained are not an excluded value. Since the excluded value is \(x = −2\), and the solutions we obtained are \(x = −\dfrac{1}{2}\) and \(x = −5\), then we can conclude that \(x = −\dfrac{1}{2}\) and \(x = −5\) are, in fact, the solutions.

    Example 9.1.5

    Solve for \(x\): \(\dfrac{x}{x+2}+\dfrac{1}{x+1}=\dfrac{5}{(x+1)(x+2)}\)

    Solution

    We can solve by following the above steps.

    Step 1. Determine the excluded values of the equation. \[\begin{array}{rl}x+2=0&x+1=0 \\ x=-2&x=-1\end{array}\nonumber\] The excluded values are \(x = −2\) and \(x = −1\). This means we can obtain any solution except for \(x = −2\) and \(x = −1\).

    Step 2. Clear denominators by multiplying each term by the lowest common denominator. \[\dfrac{x}{x+2}+\dfrac{1}{x+1}=\dfrac{5}{(x+1)(x+2)}\quad\text{Multiply each term by LCD }=(x+2)(x+1)\nonumber\] Clear denominators: \[\begin{aligned} \color{blue}{(x+2)(x+1)}\color{black}{}\cdot\dfrac{x}{x+2}+\color{blue}{(x+2)(x+1)}\color{black}{}\cdot\dfrac{1}{x+1}&=\color{blue}{(x+2)(x+1)}\color{black}{}\cdot\dfrac{5}{(x+1)(x+2)} \\ x(x+1)+1(x+2)&=5\end{aligned}\]

    Step 3. Solve the equation. \[\begin{array}{rl}x(x+1)+1(x+2)=5&\text{Distribute} \\ x^2+x+x+2=5&\text{Combine like terms} \\ x^2+2x+2=5&\text{Notice the term }x^2\text{; we solve by factoring} \\ x^2+2x-3=0&\text{Zero on one side and factor the other side} \\ (x+3)(x-1)=0&\text{Apply the zero product rule} \\ x+3=0\text{ or }x-1=0&\text{Isolate variable terms} \\ x=-3\text{ or }x=1&\text{Solutions}\end{array}\nonumber\]

    Step 4. Verify that the solutions obtained are not an excluded value. Since the excluded values are \(x = −2\) and \(x = −1\), and the solutions we obtained are \(x = −3\) and \(x = 1\), then we can conclude that \(x = −2\) and \(x = −1\) are, in fact, the solutions.

    Factoring Denominators

    In Example 9.1.5, the denominators are factored, but this is not always the case. Often we will need to factor denominators before finding the LCD.

    Example 9.1.6

    Solve for \(t\): \(\dfrac{t}{t-1}-\dfrac{1}{t-2}=\dfrac{11}{t^2-3t+2}\)

    Solution

    We can solve by following the above steps.

    Step 1. Determine the excluded values of the equation. Since we have three different denominators, we find excluded values for all different denominators. \[\begin{array}{rllr} t-1=0&t-2=0&\quad &t^2-3t+2=0 \\ t=1&t=2&\quad & (t-2)(t-1)=0 \\ &&& t-2=0\quad t-1=0 \\ &&&t=2\quad t=1\end{array}\nonumber\] The excluded values are \(t = 1\) and \(t = 2\). This means we can obtain any solution except for \(t = 1\) and \(t = 2\). Even though we obtained repeated values, we still must find the excluded values for each denominator to verify the solution(s) in the last step.

    Step 2. Clear denominators by multiplying each term by the lowest common denominator. \[\begin{array}{rl}\dfrac{t}{t-1}-\dfrac{1}{t-2}=\dfrac{11}{t^2-3t+2}&\text{Factor denominator} \\ \dfrac{t}{t-1}-\dfrac{1}{t-2}=\dfrac{11}{(t-2)(t-1)}&\text{Multiply each term by LCD }=(t-2)(t-1)\end{array}\nonumber\] Clear denominators: \[\begin{aligned}\color{blue}{(t-2)(t-1)}\color{black}{}\cdot\dfrac{t}{t-1}-\color{blue}{(t-2)(t-1)}\color{black}{}\cdot\dfrac{1}{t-2}&=\color{blue}{(t-2)(t-1)}\color{black}{}\cdot\dfrac{11}{(t-2)(t-1)} \\ t(t-2)-1(t-1)&=11\end{aligned}\]

    Step 3. Solve the equation. \[\begin{array}{rl}t(t-2)-1(t-1)=11&\text{Distribute} \\ t^2-2t-t+1=11&\text{Combine like terms} \\ t^2-3t+1=11&\text{Notice the term }t^2\text{; we solve by factoring} \\ t^2-3t-10=0&\text{Zero on one side and factor the other side}\end{array}\nonumber\]
    \[\begin{array}{rl}(t+2)(t-5)=0&\text{Apply the zero product rule} \\ t+2=0\text{ or }t-5=0&\text{Isolate variable terms} \\ t=-2\text{ or }t=5&\text{Solutions}\end{array}\nonumber\]

    Step 4. Verify that the solutions obtained are not an excluded value. Since the excluded values are \(t = 1\) and \(t = 2\), and the solutions we obtained are \(t = −2\) and \(t = 5\), then we can conclude that \(t = −2\) and \(t = 5\) are, in fact, the solutions.

    Note

    Rational functions are used to approximate or model more complex equations in science and engineering including physics, chemistry, biochemistry, optics and photography, and acoustics.

    Solving Rational Equations with Extraneous Solutions

    Example 9.1.7

    Solve for \(n\): \(\dfrac{n}{n+5}-\dfrac{2}{n-9}=\dfrac{-11n+15}{n^2-4n-45}\)

    Solution

    We can solve by following the above steps.

    Step 1. Determine the excluded values of the equation. Since \(n^2−4n−45\) factors into \((n+5)(n−9)\), which are the factors of the denominators on the left side, we take factors \((n+5)\) and \((n−9)\) and find the excluded values. \[\begin{array}{rl}n+5=0&n-9=0 \\ n=-5&n=9\end{array}\nonumber\] The excluded values are \(n = −5\) and \(n = 9\). This means we can obtain any solution except for \(n = −5\) and \(n = 9\).

    Step 2. Clear denominators by multiplying each term by the lowest common denominator. \[\begin{array}{rl}\dfrac{n}{n+5}-\dfrac{2}{n-9}=\dfrac{-11n+15}{n^2-4n-45}&\text{Factor denominator} \\ \dfrac{n}{n+5}-\dfrac{2}{n-9}=\dfrac{-11n+15}{(n+5)(n-9)}&\text{Multiply each term by LCD }=(n+5)(n-9)\end{array}\nonumber\] Clear denominators: \[\begin{aligned}\color{blue}{(n+5)(n-9)}\color{black}{}\cdot\dfrac{n}{n+5}-\color{blue}{(n+5)(n-9)}\color{black}{}\cdot\dfrac{2}{n-9}&=\color{blue}{(n+5)(n-9)}\color{black}{}\cdot\dfrac{-11n+15}{(n+5)(n-9)} \\ n(n-9)-2(n+5)&=-11n+15\end{aligned}\]

    Step 3. Solve the equation. \[\begin{array}{rl}n(n-9)-2(n+5)=-11n+15&\text{Distribute} \\ n^2-9n-2n-10=-11n+15&\text{Combine like terms} \\ n^2-11n-10=-11n+15&\text{Notice the term }n^2\text{; we solve by factoring} \\ n^2-25=0&\text{Zero on one side and factor the other side} \\ (n+5)(n-5)=0&\text{Apply the zero product rule} \\ n+5=0\text{ or }n-5=0&\text{Isolate variable terms} \\ n=-5\text{ or }n=5&\text{Solutions}\end{array}\nonumber\]

    Step 4. Verify that the solutions obtained are not an excluded value. Since the excluded values are \(n = −5\) and \(n = 9\), and the solutions we obtained are \(n = −5\) and \(n = 5\), then \(n = −5\) is an extraneous solution and we omit \(n = −5\). Hence, we can conclude the solution is \(n = 5\).

    Rational Equations Homework

    Solve. Be sure to verify all solutions.

    Exercise 9.1.1

    \(3x-\dfrac{1}{2}-\dfrac{1}{x}=0\)

    Exercise 9.1.2

    \(x+\dfrac{20}{x-4}=\dfrac{5x}{x-4}-2\)

    Exercise 9.1.3

    \(x+\dfrac{6}{x-3}=\dfrac{2x}{x-3}\)

    Exercise 9.1.4

    \(\dfrac{2x}{3x-4}=\dfrac{4x+5}{6x-1}-\dfrac{3}{3x-4}\)

    Exercise 9.1.5

    \(\dfrac{3m}{2m-5}-\dfrac{7}{3m+1}=\dfrac{3}{2}\)

    Exercise 9.1.6

    \(\dfrac{4-x}{1-x}=\dfrac{12}{3-x}\)

    Exercise 9.1.7

    \(\dfrac{7}{y-3}-\dfrac{1}{2}=\dfrac{y-2}{y-4}\)

    Exercise 9.1.8

    \(\dfrac{1}{x+2}-\dfrac{1}{2-x}=\dfrac{3x+8}{x^2-4}\)

    Exercise 9.1.9

    \(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{5}{6}\)

    Exercise 9.1.10

    \(\dfrac{3}{2x+1}+\dfrac{2x+1}{1-2x}=1-\dfrac{8x^2}{4x^2-1}\)

    Exercise 9.1.11

    \(\dfrac{x-2}{x+3}-\dfrac{1}{x-2}=\dfrac{1}{x^2+x-6}\)

    Exercise 9.1.12

    \(\dfrac{3}{x+2}+\dfrac{x-1}{x+5}=\dfrac{5x+20}{6x+24}\)

    Exercise 9.1.13

    \(\dfrac{x}{x-1}-\dfrac{2}{x+1}=\dfrac{4x^2}{x^2-1}\)

    Exercise 9.1.14

    \(\dfrac{2x}{x+1}-\dfrac{3}{x+5}=\dfrac{-8x^2}{x^2+6x+5}\)

    Exercise 9.1.15

    \(\dfrac{x-5}{x-9}+\dfrac{x+3}{x-3}=\dfrac{-4x^2}{x^2-12x+27}\)

    Exercise 9.1.16

    \(\dfrac{x-3}{x-6}+\dfrac{x+5}{x+3}=\dfrac{-2x^2}{x^2-3x-18}\)

    Exercise 9.1.17

    \(\dfrac{4x+1}{x+3}+\dfrac{5x-3}{x-1}=\dfrac{8x^2}{x^2+2x-3}\)

    Exercise 9.1.18

    \(\dfrac{6x+5}{2x^2-2x}-\dfrac{2}{1-x^2}=\dfrac{3x}{x^2-1}\)

    Exercise 9.1.19

    \(x+1=\dfrac{4}{x+1}\)

    Exercise 9.1.20

    \(\dfrac{x^2+6}{x-1}+\dfrac{x-2}{x-1}=2x\)

    Exercise 9.1.21

    \(\dfrac{x-4}{x-1}=\dfrac{12}{3-x}+1\)

    Exercise 9.1.22

    \(\dfrac{4x}{2x-6}-\dfrac{4}{5x-15}=\dfrac{1}{2}\)

    Exercise 9.1.23

    \(\dfrac{7}{3-x}+\dfrac{1}{2}=\dfrac{3}{4-x}\)

    Exercise 9.1.24

    \(\dfrac{2}{3-x}-\dfrac{6}{8-x}=1\)

    Exercise 9.1.25

    \(\dfrac{x+2}{3x-1}-\dfrac{1}{x}=\dfrac{3x-3}{3x^2-x}\)

    Exercise 9.1.26

    \(\dfrac{x-1}{x-3}+\dfrac{x+2}{x+3}=\dfrac{3}{4}\)

    Exercise 9.1.27

    \(\dfrac{3x-5}{5x-5}+\dfrac{5x-1}{7x-7}-\dfrac{x-4}{1-x}=2\)

    Exercise 9.1.28

    \(\dfrac{x-1}{x-2}+\dfrac{x+4}{2x+1}=\dfrac{1}{2x^2-3x-2}\)

    Exercise 9.1.29

    \(\dfrac{x}{x+3}-\dfrac{4}{x-2}=\dfrac{-5x^2}{x^2+x-6}\)

    Exercise 9.1.30

    \(\dfrac{2x}{x+2}+\dfrac{2}{x-4}=\dfrac{3x}{x^2-2x-8}\)

    Exercise 9.1.31

    \(\dfrac{x}{x+1}-\dfrac{3}{x+3}=\dfrac{-2x^2}{x^2+4x+3}\)

    Exercise 9.1.32

    \(\dfrac{x-3}{x+6}+\dfrac{x-2}{x-3}=\dfrac{x^2}{x^2+3x-18}\)

    Exercise 9.1.33

    \(\dfrac{x+3}{x-2}+\dfrac{x-2}{x+1}=\dfrac{9x^2}{x^2-x-2}\)

    Exercise 9.1.34

    \(\dfrac{3x-1}{x+6}-\dfrac{2x-3}{x-3}=\dfrac{-3x^2}{x^2+3x-18}\)

    9.1: Rational Equations (2024)

    References

    Top Articles
    These cup holder phone mounts are wildly easy to install — no messy adhesive required
    The Best Cellphone Holder To Keep Your Phone Steady And Safe | Reviews, Ratings, Comparisons
    Ess Compass Associate Portal Login
    Why Does It Say I Have 0 Followers on TikTok?
    Palmbeachschools Jobs
    404-459-1280
    Endicott Final Exam Schedule Fall 2023
    Start EN - Casimir Pulaski Foundation
    Leccion 4 Lesson Test
    Estate Sales Net Grand Rapids
    Thomas Funeral Home Sparta Nc
    Teen Movie Night at Kimball Junction (Percy Jackson and the Lightning Thief)
    Restaurant-grevesmuehlen in Freiburg im Breisgau
    ONE PAN BROCCOLI CASHEW CHICKEN
    The Obscure Spring Watch Online Free
    Belle Fourche Landfill
    V Pay - Alle Informationen zu dem Zahlungssystem für die Girocard
    Justified - Streams, Episodenguide und News zur Serie
    Zack Fairhurst Snapchat
    Trizzle Aarp
    Ofw Pinoy Channel Su
    Ruc Usmc List
    Adams County 911 Live Incident
    Bannerlord How To Get Your Wife Pregnant
    Adams County 911 Live Incident
    Dimbleby Funeral Home
    Dtm Urban Dictionary
    Check Subdomains Of A Domain
    Shiftwizard Login Wakemed
    Chris Bailey Weather Forecast
    Duitse Rechtspraak: is de Duitse Wet op het minimumloon wel of niet van toepassing op buitenlandse transportondernemingen? | Stichting Vervoeradres
    Creator League Standings
    100000 Divided By 3
    Wgu Admissions Login
    How Much Does Hasa Pay For Rent 2022
    Oakly Rae Leaks
    Southeast Ia Craigslist
    2010 Ford F-350 Super Duty XLT for sale - Wadena, MN - craigslist
    Joy Ride 2023 Showtimes Near Amc Ward Parkway
    No title - PDF Free Download
    Arsenal’s Auston Trusty: Inspired by Ronaldinho, World Cup dreams and Birmingham loan
    Advanced Auto Body Hilton Head
    24 Hour Pharmacy Berkeley
    cGMP vs GMP: What's the Difference? | Ascendia Pharma
    Netdania.com Gold
    Eliza Hay, MBA on LinkedIn: I’m happy to share that I’ve started a new position as Regional Director… | 36 comments
    Agurahl The Butcher Wow
    Barber Gym Quantico Hours
    Great Clips Fremont Ohio
    Rexford Tucker Pritchett
    Pamibaby Telegram
    Bbw Chan Lmbb
    Latest Posts
    Article information

    Author: Saturnina Altenwerth DVM

    Last Updated:

    Views: 6207

    Rating: 4.3 / 5 (64 voted)

    Reviews: 87% of readers found this page helpful

    Author information

    Name: Saturnina Altenwerth DVM

    Birthday: 1992-08-21

    Address: Apt. 237 662 Haag Mills, East Verenaport, MO 57071-5493

    Phone: +331850833384

    Job: District Real-Estate Architect

    Hobby: Skateboarding, Taxidermy, Air sports, Painting, Knife making, Letterboxing, Inline skating

    Introduction: My name is Saturnina Altenwerth DVM, I am a witty, perfect, combative, beautiful, determined, fancy, determined person who loves writing and wants to share my knowledge and understanding with you.